

Technical Information:

Calculation of the current's intensity:

The following formulas should be used in order to calculate the intensity of the electrical current:

Single-phase power:	Three-phase power:
$I = \frac{P}{V * \cos\varphi} = \frac{S}{V} \tag{1}$	$I = \frac{P}{\sqrt{3} * V * \cos\varphi} = \frac{S}{\sqrt{3} * V} $ (2)
Where:	Where:
I: Line's Current intensity [A]	I: Line's Current intensity [A]
P: Active Power [W]	P: Active Power [W]
Φ: Phase angle between voltage and current	Φ : Phase angle between voltage and current
S: Apparent power [VA]	S: Apparent power [VA]
V: Phase-neutral voltage [V]	V: Phase-phase voltage [V]

Calculation of the section considering voltage drop:

To calculate the gauge of a cable, the material of the conductor to be used and the power factor must be considered based on table 9 of the NFPA-70 National Electrical Code (NEC-2017), where the different gauges for the various values of effective impedance. The following formulas should be used to calculate the effective impedance:

Single-phase power:		Three-phase power:	
$Z = \frac{5 * \% V * V}{I * L}$	(3)	$Z = \frac{10 * \% V * V}{\sqrt{3} * I * L}$	(4)
Where:		1	
L: Line length [m]			
I: Line's Current intensity [A]			
V: Maximum allowable voltage drop [V]			
%V: Percentage of voltage drop [%]			
Z: Effective impedance [Ω /km]			

Conductivity constants:

The following table displays the conductivity constants for each of the metals used:

Metal conductor	Conductivity
Copper	100%
Aluminum 1350	61,20%
Aluminum 6201	52,50%
Aluminum S-8000	61%

Fault current calculations according to NEC 2017:

Short circuit in copper conductors:		Short circuit in aluminum conductors	
$\left(\frac{I^2}{A^2}\right)t = 0.0297 \log_{10} \frac{T_2 + 234}{T_1 + 234}$	(5)	$\left(\frac{I^2}{A^2}\right)t = 0.0125 \log_{10} \frac{T_2 + 228}{T_1 + 228}$	(6)
Where:			
I: Short circuit current [A]			
A: Area of conductor [kcmil]			
t: Duration of short circuit [s]			
T1: Initial temperature of conductor [°C]			
T ₂ : Final temperature of conductor [°C]			

T2 values:

Tipo of insulation for copper or aluminum conductors:	T ₂
Paper, rubber, varnished fabric	200
Thermoplastic	150
Cross-linked polyethylene	250
Ethylene propylene rubber	250

Calculations of economic and CO₂ emission savings:

According to Joule's law, the amount of energy transmitted by a conductor can be calculated using the following formula:

$$E_P = R * I^2 * t [J] \tag{7}$$

If more than one conductor should be considered, the previous formula should be modified and expressed as:

$$E_P = n * R * L * I^2 * \frac{t}{1000}$$
(8)

Where:

 E_P : Energy lost within the line [kWh]

n: Number of charged conductors (2 in single-phase and 3 in three-phased)

R: Conductor's resistance per kilometer [Ω /km]

L: Longitude of the line [km]

I: Electrical current [A]

t: Time [h]

Therefore, the following formula can be used to calculate the energy that can be saved if a smaller conductor is installed:

$$E_A = \frac{n}{c} * (R_1 - R_2) * L * (I)^2 * \frac{t}{1000} \quad (S_2 > S_1)$$
(9)

In this formula, S corresponds to the area of the cable's cross-section and c to the number of parallel conductors in each phase.

Once the energy reductions are calculated, it is possible to estimate subsequent economical savings considering specific electricity rates. Similarly, the CO₂ emissions savings can be determined entering data regarding CO₂ emissions per generated kWh. The predetermined values for these variables can be modified by the user in "Settings".

Examples:

 The user wants to calculate the economical and ecological savings in a 120 meters three-phase 2/0 AWG copper conductor in a PVC conduit that carries a continuous load of 10 A and a noncontinuous load of 105 A.

Solution:

The current is calculated per:

$$I = (noncontinuous \ load) + 1.25 * (continuous \ load)$$
(10)

It can be concluded that the total electric current can be calculated as follows:

$$I = (105) + 1.25 * (10) = 117.5 A$$
⁽¹¹⁾

Additionally, it is known that the line is installed for a year; hence the total time in hours is equal to:

$$t = 365 * 24 = 8760 \ hours \tag{12}$$

A larger conductor size or a conductor with a larger area of cross-section must be considered in order to estimate the possible economical and ecological savings. This example will consider a 2/0 AWG and 3/0 AWG conductors, which would have the following equivalencies in mm².

🖸 prysmian

Calibre	mm2	S	R
1/0 AWG	53.5	S1	R1=0.39
2/0 AWG	67.4	S2	R2=0.33
3/0 AWG	85.0	S3	R3=0.253

Yearly Savings

Initially, the recommended conductor size was 1/0 AWG. If a 2/0 AWG is considered instead (which would have a larger cross-section), the result would be:

$$E_A = \frac{3}{1} * (0.39 - 0.33) * 0.12 * (1 * 117.5)^2 * \frac{8760}{1000} = 2612.36 \, kWh$$
(13)

In the app, you can set the rates for CO2 emissions and economic expenses, this is different for each country, in this case the values set by default in the CableApp will be used, which are 0.15 US\$/kWh and 0.40 kg CO2/kWh. Furthermore, if you want to change the value for the percentage of current due to the Joule effect, it is possible to do in "Advanved Calculations". As an example, in the case of Costa Rica, the data can be found on the Instituto Meteorológico Nacional website, at the link: <u>FactoresEmision-GEI-</u>2020.indd (imn.ac.cr).

Economical savings:

$$A_{\$} = 2612.36 \, kWh * 0.15 US\$ / kWh = 391.85 \, US\$$$
(14)

CO₂ emission savings:

$$A_{CO2} = 2612.36 \, kWh * \frac{0.40 \, kgCO_2}{kWh} = 1044.94 \, kgCO_2 \tag{15}$$

Further Yearly Savings Using a Larger Cross-Section

The following equations compare an even larger conductor size (3/0 AWG) to the results obtained with a 2/0 AWG:

$$E_A = \frac{n}{c} * (R_2 - R_3) * L * I^2 * \frac{t}{1000} (S_3 > S_2)$$
(16)

$$E_A = \frac{3}{1} * (0.33 - 0.253) * 0.12 * (1 * 117.5)^2 * \frac{8760}{1000} = 3352.53 \, kWh \tag{17}$$

Economical savings:

$$A_{\$} = 3352.53 \, kWh * 0.15 US\$ / kWh = 502.88 \, US\$$$
(18)

CO₂ emission savings:

$$A_{CO2} = 3352.53 \, kWh * \frac{0.40 kgCO_2}{kWh} = 1341.01 \, kgCO_2 \tag{19}$$

2. Calculate the savings if you have the same data from the previous example, except that the current intensity due to the Joule effect is 60%.

Solution:

It is known from the above problem that:

$$I = 117.5 A$$

 $t = 8760 hours$

Yearly Savings

Initially, the recommended conductor size was 1/0 AWG. If a 2/0 AWG is considered instead (which would have a larger cross-section), the result would be:

$$E_A = \frac{3}{1} * (0.39 - 0.33) * 0.12 * (0.6 * 117.5)^2 * \frac{8760}{1000} = 940.45 \, kWh$$
(20)

Economical savings:

$$A_{\$} = 940.45 \, kWh * 0.15 US\$/kWh = 141.07 \, US\$$$
(21)

CO₂ emission savings:

$$A_{CO2} = 940.45 \, kWh * \frac{0.40 kgCO_2}{kWh} = 376.18 \, kgCO_2 \tag{22}$$

Further Yearly Savings Using a Larger Cross-Section

The following equations compare an even larger conductor size (3/0 AWG) to the results obtained with a 2/0 AWG:

$$E_A = \frac{n}{c} * (R_2 - R_3) * L * I^2 * \frac{t}{1000} \quad (S_3 > S_2)$$
(23)

$$E_A = \frac{3}{1} * (0.33 - 0.253) * 0.12 * (0.6 * 117.5)^2 * \frac{8760}{1000} = 1206.91 \, kWh$$
(24)

Economical savings:

$$A_{\$} = 1206.91 \, kWh * 0.15 US\$/kWh = 181.04 \, US\$$$
⁽²⁵⁾

CO₂ emission savings:

$$A_{CO2} = 1206.91 \, kWh * \frac{0.40 kgCO_2}{kWh} = 482.76 \, kgCO_2 \tag{26}$$

GLOSSARY OF DEFINITIONS

		А	
Ampere It is the base unit of measurement for electrical currents in the International Syste		ents in the International System of	
	Units. The ampere is that constant current which, if maintained in two straight parallel		maintained in two straight parallel
	conductors of infinite length, of negligible circular cross-section, and placed		
	one metre apart	in vacuum, would produce betwee	n these conductors a force equal
	to 2×10 ⁻⁷ newtor	ns per metre of length. It is represe	nted with the symbol A in honor of
	André-Marie Am	père.	
		С	
Cable	A collection of or	ne or several insulated conductors,	bedding, wire armoring and an
	outer jacket. It ca	an have one or more non-insulated	conductors.
Circuit	Set of electrical r	naterials (conductors, equipment, e	etc.) of different phases or polarities,
	powered by the	same energy source and protected	l against an overcurrent by the
	same protection	device(s). The circuits that are part	t of the utilization devices or
	receivers are not	t included in this definition.	
Conductor	A material that c	an conduct or transmit electricity. C	ables that contain conductive
	materials are also commonly referred to as conductors.		
Continuous	Load whose maximum current is expected to circulate for three hours or more.		
load			
Correction	The result of a fit test which is used to correct ampacities depending on the number of		
Factor	conductors.		
		D	
Demand	The relationship between the maximum demand of a system under study and the total		
Factor	load that is connected to it.		
Demand Factor	or		
Type of Facilit	у	Load to which the demand	Demand Factor (%)
		factor will be applied (VA)	
Housing units		Less than or equal to 3,000	100
		3,001-120,000	35
		More than 120,000	25
Hospitals		Less than or equal to 50,000	40
		More than 50,000	20
		Less than or equal to 20,000	50

Hotels and motels, apartments 20,001-100,000 40			40
without a kitchen		More than 100,000	30
Storage warehouse		Less than or equal to 12,500	100
		More than 12,500	50
Other Total volt-amperes 100			100
Duct	Conduit, gutter of	r pipeline in which the cables are p	blaced.
		E	
Electric current	The amount of el	ectric charge that passes through	a cross section of the conductor
intensity	per second.		
Electric tray	Channeling form	ed by a unit or set of units, made u	up of a continuous base, elevated
	and uncovered s	ides, together with their ironwork a	and accessories, which form a
	structural system	used to securely hold and support	rt cables, pipes and other conduits.
Electrical	A set of electrical	devices and circuits that are joint	with the purpose of producing,
installation	converting, transf	forming, distributing or using electi	rical energy.
Extrusion	Procedure used	to create objects with a fixed cross	s-sectional figure. In the case of this
	industry, it is used	d to apply the chosen cable insula	tion.
		G	
Ground	Earth's conductiv	e mass which conventionally is sa	aid to have an electric potential
	equal to cero at e	each of its points.	
Grounding	The connection of	of an exposed energized conducto	or to a non-energized point. Usually
	this point can be	the ground on which the building (or construction is located.
		Ι	
Impedance	Impedance Quotient of the voltage at the terminals of a circuit divided by the current that flows		divided by the current that flows
	between them. This definition only applies to sinusoidal currents.		
Inductance	The property possessed by a circuit in which a magnetic field is established in function		
	of the current that flows within it. The coefficient of self-induction L is the measurement		
	of this property and it is quantified as the ratio between the self-induction electromotive		
	force and the change in the current over time. A Henry (H) is the unit for inductance		
	used by the International System of Units. A circuit that has an inductance of one		t that has an inductance of one
	Henry when vary	ing the current at a rate of one An	npere per second produces an
	electromotive force of inductance that is equal to one Volt.		ne Volt.
Insulation	Material with a hi	gh electrical resistance that covers	s the conductors with the objective
	of avoiding electrical discharges between themselves and/or against any other surface		

that conventionally has zero electric potential (devices, facilities or people). There are
two types: thermoplastic and thermoset.
A continuous and uniform tubular lining of generally extruded metallic or non-metallic
material.
Μ
An electrical cable that is formed by a set of smaller cables.
Ν
The mechanical power available on a motor's axis. Generally expressed in Watt or
kilowatt.
Load where the waveform of the steady state current does not follow the waveform of
the applied voltage.
0
The unit of electrical resistance used by the International System of Units. One Ohm is
the value of resistance that a conductor has on the passage of an electric current,
equal to one Ampere, when the potential difference between its ends is one Volt. It is
represented by the Greek letter Ω . It is name in honor of Georg Simon Ohm.
Р
The relationship between the power in watts and the product of the effective values of
voltage and current. For sinusoidal waveforms, it is equal to the cosine of the phase
difference between the voltage and current.
Maximum amount of power that an installation can supply to the equipment and
devices connected to it, either by design or execution.
R
Set consisting of one or more electrical conductors and the elements that ensure their
fixation and mechanical protection.
S
Symmetrical fault current at nominal voltage, to which an appliance or a system can be
connected without suffering damage that exceeds the defined acceptance criteria.
An accidental or intentional connection of two or more points of a circuit with different
voltages by means of a resistance or an impedance.
An electrical system that is composed of only one current or which has only one
conductor.

	Т
Technical	Document given by the manufacturer which provides all the technical information
sheet	related to their product.
Testing	Test that is performed on a product in order to verify any of its specific characteristics.
Thermoplastic	Insulation material made of PVC or low-density polyethylene. It is susceptible to
	softening if it is heated or to hardening if its cooled repeatedly. Once the plastic is within
	a specific temperature range, it will reach a softening state which will allow for it to be
	extruded.
Thermoset	Insulation material that undergoes a drying and curing process after it has been heated
	and extruded onto the cables. These processes will prevent it from softening ever
	again.
Three-phase	Electric system composed by three single-phase alternating currents. Energy flows
system	through each of the three conductors.
V	
Voltage Drop	Difference in the electric potential between two points within an installation.
Voltage	Measurement of the difference in electrical potential between two points.

GLOSSARY OF ABBREVIATIONS

	Α
А	Unit used to denote the intensity of electric current.
AAC	All Aluminum Conductor: conductor or cable of aluminum wires.
AACS	Aluminum Alloy Standed Conductor: aluminum alloy cable.
AC	Armored Cable: cables provided with flexible metal armor.
ACSR	Aluminum Conductor Steel Reinforced: aluminum conductor with galvanized steel
	center.
ACSR-AW	ACSR with steel center coated with aluminum (Alumo-Weld). Also known as
	ACSR-AS.
ACSS	Aluminum Conductor Steel Supported: high temperature aluminum cables.
ACSS-AW	Aluminum Conductor Steel Supported (Alumo-Weld): high temperature aluminum
	cables, with aluminum coated steel core.
ACSS-TW	Aluminum Conductor Steel Supported (Trapezoidal Wire): high temperature
	aluminum cables, formed with trapezoidal wires.
Al	Aluminum symbol.
AW	Alumo Weld: steel rod with aluminum coating.
AWG	American Wire Gauge: Scale of American gauges for wires and cables, also known
	as b&s (Brown and Sharpe) Wire Gauge.

AWM	Appliance Wiring Material: conductors intended for the internal wiring of
	household appliances.
	В
BIL (NBIA):	Basic Impulse Insulation Level: nivel básico de aislamiento al impulso (NBIA).
	С
СМ	Circular Mil: Area of a wire with a diameter of 0.001 inch.
СР	Horsepower: also known as HP.
CPE	Chlorinated PolyEthylene
СТ	Engraving of cables for use in trays.
CT-SR	Engraving of cables for use in trays and exposed to the rays of the sun.
Cu	Copper symbol.
CUSn	Symbol denoting tinned copper.
CV	Continuous Vulcanization: vulcanization process in line with extrusion.
CW	CopperWeld: steel rod with copper coating.
	D
DLO	Diesel Locomotive cable. Cable for diesel locomotives.
DRS	Cables for Underground Residential Distribution (URD type).
DS	Cables for Underground Distribution (UD type).
	E
EP(R)	Ethylene Propylene (Rubber): ethylene-propylene-based insulation.
	G
G	Ground: flexible cable for mines with conductors for grounding.
G-GC	Ground-Ground Check: flexible cable for mines, with conductors for grounding and
4 4 4	an insulated conductor to check the continuity of the ground conductors
	Н
HDPE	High Density Polyethylene (HDPE)
HMWP	High Molecular Weight Polyethylene
НР	Horse Power.
Hz	Hertz: unit for frequency denomination.
IACS	International Annealed Copper Standard: international standard for copper
meo	conductivity (equal to 100% for annealed electrolytic copper).
	K
kcmil	kiloCircularMil: unit of area of the North American system of calibers of electrical
Kenni	conductors, equal to 1 000 circular mils (CM). Formerly known as MCM.
kV	kiloVolt: unit of measurement of electrical voltage equal to 1 000 volts.
ΚV	Kilovoit. unit of measurement of electrical voltage equal to 1 000 volts.
LDDE	L avy Donaity Polyothylono (DEPD)
LDPE	Low Density Polyethylene (PEBD).
LS	Low Smoke. Engraving of cables that comply with the non-propagation of the fire,
	reduced emission of fumes and reduced emission of halogenated acid gas.
MC	M Matal Clad ashla anna davith a matal anna a faba interda alatana an anna atal
МС	Metal Clad: cable armed with a metal cover of the interlock type or corrugated
MD	tube
MP	Mine Power Feeder Cable: mine feeder cable with three phase conductors and
MD CC	three grounding conductors.
MP-GC	MP-Ground Check: MP with an isolated conductor to check the continuity of the
	ground conductors.
m.s.n.m	Meters above mean sea level (mamsl)

MTW	Machine Tool Wire: conductor with thermoplastic insulation for wiring machine
MT	tools.Medium Voltage (Media Tensión): cables with solid insulation for voltages from 2
	001 to 35 000 volts.
MV	Medium Voltage Cable: solidly insulated cables for voltages from 2,001 to 35,000 volts.
	N
Neoprene	Polychloroprene, synthetic rubber used as insulation and flexible cable cover.
NM	Non-Metallic Sheathed Cable: insulated conductors and with non-metallic cover,
1 1 1 1 1	flame retardant, for use in dry places at 75 ° C
NM-B	Non-Metallic Sheathed Cable: insulated conductors and with non-metallic cover, flame retardant, for use in dry places at 90 ° C
NMC-B	Non-Metallic Sheathed Cable: insulated conductors with non-metallic cover, flame
	retardant, for use in dry, damp, wet and corrosive places at 90 ° C
	P
PE	Polyethylene, can be of the PEAD or PEBD types.
PEAD	High Density Polyethylene.
PEBD	Low Density Polyethylene.
PCG	Portable Cable Control and Ground Conductors: flexible cable for mines with
100	control conductors and for grounding, 2 000 volts.
PG	Portable Cable Ground Conductor: flexible cable for mines with phase conductors
10	and for grounding, 2 000 volts.
psi	Pounds per square inch.
PVC	PolyVinyl Chloride: compound widely used as insulation and cover
1.10	R
RHH	Rubber High Heat: cables with insulation and synthetic rubber cover, for 90 °C, 600v
RH/RW	Rubber Heat, Rubber Moisture (Water): cables with insulation and cover of synthetic rubbers for 75 °C in dry environment and 60 °C in wet, 600 volts.
RHW	Rubber Heat Moisture (Water): cables with insulation and cover of synthetic rubbers for 75 °C in dry and humid environment.
RHW-2	Same as RHW but with insulation of 90 °C in dry and humid environment.
SE	Service Entrance: one or more drivers with or without an outer deck used to
	power services.
SH	Shielded Mining Cable Single Conductor: flexible monopolar cable for mines with
0115	screen and cover for heavy use.
SHD	Shielded Mining Cable with Ground Conductors: flexible three-phase cable for
SHD-GC	mines with screen and conductors for grounding.
	SHD-Ground Check: SHD with one conductor isolated for the grounding continuity check circuit and two ground conductors.
SIC	Specific Inductive Capacity: specific capacitive inductance, dielectric constant of a
510	material that is the relationship that exists between a capacitor with the material
	as a dielectric and the same condenser with air as a dielectric.
SIS	Synthetic Insulated Switch Board Cable: cable for boards with synthetic
	elastomeric insulation, 90 °C, 600 volts.
SI	Hard Service Cord Junior: rough use cord for light service with elastomeric
SJ	isolation, 300 volts.
SJO	SJ Oil Resistant: SJ with oil resistant insulation.

SJT	SJ Thermoplastic: SJ with insulation and thermoplastic cover, 60 °C, 300 volts (90	
	and 105 °C with PVC insulation).	
SMT	Construction equal to the SPT but with M-class drivers.	
SO	Service Cord Oil Resistant: heavy duty cord rough use; insulation and elastomeric	
	cover; the cover is oil resistant, up to 90 °C, 600 volts.	
SR	Engraving for cables that are weather resistant.	
SPT	Service Parallel Thermoplastic: parallel cord with PVC insulation for light service,	
	60 °C, 300 volts. (90 and 105 °C with PVC insulation).	
ST	Hard Service Cord Thermoplastic: cable or cord rough use for heavy duty with	
	insulation and thermoplastic cover, 60 to 105 °C, 600 volts.	
	T	
ТС	Power and Control Tray Cable: two or more insulated conductors with or without	
	ground conductor and with an outer cover of non-metallic material and approved	
	for use in tray installations.	
TC-ER	Tray Cable-Exposed Run. Engraving of exposed wires that pass the impact and	
	crush test.	
TF	Thermoplastic Fixture: 7-wire wire or cable for wiring electrical appliances, PVC	
	insulation, 60 °C. 600 volts.	
TFF	TF Flexible: TF but with flexible conductor.	
TFN	TF Nylon: TF with PVC insulation and nylon cover. 90 °C, 600 volts.	
TFFN	Thermoplastic Fixture Flexible Nylon: TFN with flexible conductor.	
TGP	General Purpose Thermoplastic: cables for wiring in general.	
THHN	Thermoplastic High Heat Nylon: wire or cable with PVC insulation and nylon	
TI 11A7	cover, 90 °C in dry environment, 600 volts.	
THW	Thermoplastic Heat and Moisture (Water) Resistant: wire or cable with PVC insulation for 75 °C in dry or humid environments. 600 volts.	
THW-2	THW for 90 °C in dry and humid environments.	
THHW	Thermoplastic High Heat Moisture (Water) Resistant: insulated cable with PVC for	
1 1 1 1 1 1 V	90 °C in dry environments and 75 °C in wet environments, 600 volts.	
THWN	THW with nylon cover, resistant to moisture, oils, and hydrocarbons, 75 °C in	
1110010	humid environments. 600 volts.	
TW	Thermoplastic Building Wire Moisture (Water) Resistant: wire or cable insulated	
	with moisture-resistant PVC. 60 °C. 600 volts.	
THWN-2	THWN for 90 °C in dry and humid environments.	
TSJ-N	Cord use rough for light service with thermoplastic insulation, 600 volts. 60, 90	
- ,	and 105 °C with PVC insulation).	
	U	
UD	Underground Distribution: cables for underground distribution, also known as DS	
	cables.	
UF	Underground Feeder: single or several conductor cable with insulation and	
	thermoplastic cover for underground connections in low voltage.	
	thermoplastics for underground connections in low voltage.	
URD	Underground Residential Distribution: underground residential distribution	
	cables, also known as DRS.	
USE	Underground Service Entrance: cable for underground connections in low voltage,	
	insulation and elastomeric covers.	
V		
V	Volt: unit used to denote electrical voltage.	
VA	Volt Ampere: apparent power unit for transformers.	

VW-1	Vertical Wire Flame Test: flame resistance test by placing the specimen in an		
	upright position.		
	W		
W	Flexible cables for mines: one or more conductors with insulation and elastomeric		
	cover for extra-weighed service.		
	X		
XHHW	Cross (X)-Linked Polyethylene High Heat and Moisture (Water) Resistant: cable		
	with cross-chain polyethylene insulation, 90 °C dry environment and 75 °C wet		
	environment, 600 volts.		
XHHW-2	XHHW for 90 °C in dry and humid environments.		
XLP	Cross (X)-Linked Polyethylene: cross-chain polyethylene, also known as		
	vulcanized polyethylene or XLPE.		
Xt	Xmas Tree Cord: parallel cord, two insulated conductors with PVC for series of		
	Christmas trees.		

GLOSSARY OF INSTITUTIONS AND ORGANIZATIONS

	Α	
AAR	Association of American Railroads.	
Abs	American Bureau of Shipping.	
AEC	Atomic Energy Commission.	
AEIC	Association of Edison Illuminating Companies.	
AENOR	Spanish Association of Standardization and Certification	
ANCE	National Association for Standardization and Certification of the Electricity Sector.	
ANSI	American National Standards Institute.	
ASTM	American Society for Testing and Materials: Organization dedicated to the publication of standards, test methods and recommendations on materials.	
	Publication of standards, test metrious and recommendations on materials.	
BSI	British Standards Institution, its main activities include certification, auditing and	
	standards development.	
	С	
CEI (IEC)	(IEC): Commission Electrotechnique Internationale: French name for the	
	International Electrotechnical Commission.	
CEI	Comitato Elettrotecnico Italiano: Italian Electrotechnical Committee.	
CFE	Federal Electricity Commission (Mexico).	
CCNNIE	National Advisory Council for the Standardization of Electrical Installations.	
CIDET	Center for Research and Technological Development of the Electricity Sector,	
	whose objective is to promote and develop activities of standardization and	
004	certification of product conformity.	
CSA	Canadian Standard Association: Canadian institution for the certification of	
	electrical and electronic equipment according to the standards that it publishes.	
SGN	General Directorate of Standards of the Ministry of Trade and Industrial Development.	
DIN	German Standards Institute.	
	E	
ECA		
ECA	Costa Rican Accreditation Body.	

EIA	Electronic Industries Association: American grouping of the electronics industry.
EMA	Mexican Accreditation Entity.
	I
ICEA	Insulated Cable Engineers Association: current name of IPCEA (Power), North
	American association for the standardization of electrical conductors.
IEC	International Electrotechnical Commission: international organization in charge of
	the standardization of electricity producers.
IEEE	Institute of Electrical and Electronic Engineers: the world's leading association of
1666	engineers in electricity, electronics and related matters.
INTECO	Instituto de Normas Técnicas de Costa Rica, its main activities include certification,
INTECU	auditing and standards development.
ISO	International Standards Organization.
150	
JIS	Jananaga Industrial Standard
J15	Japanese Industrial Standard.
MECA	
MESA	Mine Enforcement Safety Act: Health and Safety Council for the Mining Industry
MSHA	Mine Safety and Health Administration: north American health and safety unit of
	the mining industry.
MIL	Standard American Military
	N
NBS	National Bureau of Standards: Standardization division of the U.S. Department of
	Commerce.
NEC	National Electrical Code: General standard on electrical products and installations
	published by the NFPA under OSHA guidelines
NEMA	National Electrical Manufacturers Association: association of manufacturers of
	electrical equipment in support of standardization and manufacturing
	technologies.
NESC	National Electrical Safety Code.
NFPA	National Fire Protection Association: American Association for Fire Protection,
	responsible for the publication of the NEC.
NMX	Mexican standards for industry.
NOM	Official Mexican Standard: documents published by the DGN for standardization
	and specification of products.
	0
OSHA	Occupational Safety and Health Administration: U.S. office of the Department of
001111	Labor responsible for the regulation of the safety factors required in the
	workplace.
	R
REA	Rural Electrification Administration: U.S. office of the Department of Agriculture
NLA	responsible for standardization of equipment offered by independent telephone
	companies.
CAE	S Seciety of Automotive Engineers: Acceptation of Automotive Engineers
SAE	Society of Automotive Engineers: Association of Automotive Engineers.
SEDE	Ministry of Energy.
UL	Underwritters Laboratories, Inc.: A private institution dedicated to the recognition
	and approval of electrical and electronic products, in accordance with its own
	standards.

Г

	v
VDE	Verband Deutscher Elektrotechniker: German Association of Electrical Engineers.